

ヒスタミンとドーパミン生成酵素の変遷

新田 陽子¹, 小森 博文², 植野 洋志³

生理活性アミンとして知られるヒスタミンとドーパミンはそれぞれ、ピリドキサール5'-リ ン酸を補酵素とするヒスチジン脱炭酸酵素(HDC)、芳香族アミノ酸脱炭酸酵素(AroDC) の触媒作用により生成する.HDC, AroDCともに基質特異性が高く、HDCによるドーパミ ン生成およびAroDCによるヒスタミン生成の触媒作用はどちらもきわめて低い.ヒスチジ ンメチルエステルとヒト由来C末端欠損HDC(活性型とされる)との複合体、CarbiDOPA (カルビドーパ)とブタ由来AroDCとの複合体のX線結晶構造解析結果を比較すると、活性 中心部位ではアミノ酸1残基(それぞれS354とG354に相当)のみが両酵素間で異なってい た.その残基をセリンからグリシンに置換したHDCの変異体はヒスチジンよりもDOPAと の反応をより触媒するようになり、酵素機能がAroDCに近づくことが明らかとなった.脱 炭酸反応とその後の生成物の放出に至るメカニズムはAroDCとHDCとで共通していると考 えられた.

1. はじめに

高等動物において、ヒスタミンやドーパミン、セロトニ ン、_ア-アミノ酪酸(GABA)などの生理活性アミンは、神 経伝達物質として働いている他、さまざまな生理作用に関 与することが知られている。これらの生理活性アミンは、 ヒスチジン、DOPA(ドーパ)、5-ヒドロキシトリプトファ ン、グルタミン酸といったアミノ酸から、ビタミンB₆誘 導体であるピリドキサール5'-リン酸(PLP)を補酵素とす るアミノ酸脱炭酸酵素の触媒作用により生成する。ヒスタ ミンはヒスチジン脱炭酸酵素(HDC)、ドーパミン、セロ トニンは芳香族アミノ酸脱炭酸酵素(AroDC)、GABAは グルタミン酸脱炭酸酵素(GAD)によってそれぞれ生成 される.**表1**にHDC、AroDC、GADそれぞれの特徴を記し た、3種類の酵素はいずれも高等動物のみならず、微生物

¹岡山県立大学保健福祉学部(〒719-1197 岡山県総社市窪 木111)

2香川大学教育学部

3龍谷大学農学部

Relationship between histamine and dopamine synthesizing enzymes

Yoko Nitta¹, Hirofumi Komori² and Hiroshi Ueno³ (¹Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama 719–1197, Japan, ²Kagawa University, ³Ryukoku University) DOI: 10.14952/SEIKAGAKU.2015.870321

© 2015 公益社団法人日本生化学会

においても見いだされている. この場合脱炭酸反応は微生 物が酸性にさらされたときに細胞内で蓄積するプロトン (H⁺) を中和する酸耐性機構における中核的な役割を果た すと考えられている. これらの酵素は、PLP依存型酵素の 立体構造を七つに分類したときにフォールドタイプIに属 し、さらに進化的な関係からアミノ酸脱炭酸酵素を四つに 分類したときにグループⅡに属する. すなわち, 構造的に も進化の観点からもかなり共通点が多い. それにも関わ らず、これらの酵素は基質特異性が高いことが知られてい る。中でも、HDCとAroDCはヒトのアミノ酸配列で比較 すると高い相同性(アミノ酸一致度は52%)がみられる が、HDCによるドーパミンやセロトニン生成の触媒作用 およびAroDCによるヒスタミン生成の触媒作用はどちら もきわめて低い. HDCあるいはAroDC単独の研究は多く なされているが、両者を扱った研究はあまりなされてこな かった. 最近の研究によってHDCのアミノ酸残基を一つ 置換させることで基質特異性が変化し、ドーパミン生成の 触媒作用が100倍以上高まることがわかった¹⁾.本稿では その意義について考察する.

PLP依存型酵素(以下,PLP酵素)は、基質であるアミノ酸とシッフ塩基を介した複合体を形成し、そのα位では 脱炭酸の他に、アミノ基転移、ラセミ化、逆アルドール縮 合、そして、β位もしくはγ位では脱離反応、置換反応な ど多岐の反応を触媒する.PLP酵素のタンパク質部分は、 触媒反応を促進する役割の他に、目的の反応以外の副反応

表1 哺乳類グループⅡ脱炭酸酵素

	基質	生成物	アイソフォームの数	タンパク質サイズ (kDa)
ヒスチジン 脱炭酸酵素 (HDC)	ヒスチジン	ヒスタミン	1	~74
芳香族アミノ酸 脱炭酸酵素(AroDC)	DOPA 5-ヒドロキシトリプトファン	ドーパミン セロトニン	1	~54
グルタミン酸 脱炭酸酵素(GAD)	グルタミン酸	GABA	2	\sim 65 \sim 67

を抑制する働きを担っていると考えられる.今回PLP酵素のHDC(活性型)としては初めてのX線結晶構造解析を行ったので(すでにLactobacillus 30a由来HDCの結晶構造 解析は行われているが,この酵素はピルビン酸を触媒中心とする),構造から推察される反応機構についても考察する.

2. 活性型 HDC の結晶構造解析に基づく基質特異性改変

1) C末端欠損HDCの結晶構造解析¹⁾

1992年にヒト好塩基球白血病細胞(KU-812-F細胞)か らHDCのcDNAがクローニングされ、そのcDNAにより 予測されたHDCのタンパク質の大きさは74kDaであっ た. ヒトHDCに先立って、1990年にラットHDCのcDNA がクローニングされたが、そのとき予測されたタンパク 質の大きさは73kDaであった. その後さまざまな高等動 物のゲノム情報から予測されたHDCのタンパク質群のア ミノ酸配列を並べると、N末端側に相同性の高い配列が 並び、C末端側に相同性の低い配列が並ぶ.たとえば、ヒ トHDCのアミノ酸配列に類似した配列をBLASTで検索す ると、ショウジョウバエHDCのアミノ酸配列とヒトHDC の477残基までのN末端側が相同領域として示される. ヒ トHDCの1~477残基までと、ショウジョウバエHDCと の一致度は62%であるのに対し、C末端側185残基の一致 度は19%である.また、AroDCとGADの配列を比較する と、これもN末端側の477残基に共通の領域(コアドメイ ン)を持っている²⁾.3種類の酵素では、AroDCの全長配 列(コアドメインに相当)が最も短く、コアドメインに対 してC末端に約180残基付加しているのがHDCであり、N 末端側に約100残基付加しているのがGADである. ヒト HDCの477残基までのペプチドは54kDaに相当する. ヒ トHDCの全長型74kDaに相当するmRNAから翻訳される タンパク質は前駆体であり、そのC末端はプロセシングを 受けて54kDaのペプチドに変換され、これが活性型HDC として機能していると考えられている. この54kDaのサ イズのHDCを組換え体タンパク質として大腸菌内で発現 させ、大量精製を試みた.

精製したHDCをSDS-PAGEで調べると、還元剤なしで は単量体のHDC由来と思われるメインバンドが50kDa付

図1 PLPとHMEの複合体のステレオ図

近に現れた他,150kDaより大きなサイズのバンドが現れ た.還元剤共存下では高分子量のサイズのバンドが消失 したため、ジスルフィド結合による多量体が生じていると 考えられた.179と417残基目のシステインをセリンに置 換した変異体を作製し、精製したものをSDS-PAGEで調べ ると、還元剤なしでの高分子量のサイズのバンドはみられ ず、単量体のサイズのバンドのみが現れた.この二つの変 異の導入が多量体化を抑制し、均一な試料を作製するのに 有効であったため、この変異体ヒトHDCについて大量精 製を行うこととした.なお、PLP酵素に特徴的な吸収スペ クトルや酵素活性において、変異の導入によって大きな変 化はみられなかった.精製した組換え体C179SC417Sヒト HDC(hHDC)について、基質アナログであるヒスチジン メチルエステル(HME)との共存下で結晶が得られたた め²⁾、X線結晶構造解析を行った.

hHDCの結晶構造はホモ二量体として得られ, PLPのピ リジン環は275残基目のアラニン(A275)のメチル基と, H194のイミダゾール環にはさまれている形をとっていた (図1). D273とT248はPLPピリジン環の窒素原子および フェノール性ヒドロキシ基の酸素原子と相互作用している と思われた. PLPのリン酸基はS151,N302,S354と水素結 合による相互作用が,リン酸基の負の電荷はリン酸基の近 くに位置しているへリックスα5の双極子との相互作用が 考えられた. HMEのイミダゾール環はPLP-HME複合体の ピリジン-イミンで作るπ電子平面に対してsi面に向いて おり,イミダゾール環のN_δとN₆はそれぞれY81の主鎖の アミノ基と水分子との間で水素結合している位置にみられ た(図2).イミダゾール環は,この二つの水素結合を除 いて,疎水残基(W72,Y80,L102,F104)に囲まれていた.

図2 hHDC内の基質結合部位

HMEのカルボキシ基の酸素原子と水素結合できる位置に H194がみられた.HMEのカルボキシ基はπ電子平面に対 して垂直方向にみられ,Dunathan仮説では,PLPの平面に 垂直に位置する結合が切断されるとされており,その仮説 に従えばヒスチジンが活性中心でPLPと複合体結合した 後,PLPの平面に対して垂直の向きに配位しているカルボ キシ基が切断されて脱炭酸反応がなされると考えられる.

アスパラギン酸アミノ基転移酵素に代表されるフォー ルドタイプIでは、PLPのsi面が活性中心部位すなわちリ シン残基のある側を向き、re面が溶媒にさらされる側を向 いていることが共通している³⁾.hHDCについても例に違 わず PLPのsi 面が活性中心のリシン残基がある側を向いて いた. アミノ基転移酵素ではα位の反応はプロトンの引き 抜きから始まり、それはsi面で行われることが共通してみ られる.反応の際には酵素の構造が closed conformation と なり、基質が溶媒(水分子)にさらされるのを抑制する ことで、re面からのプロトン付与によるラセミ化の副反 応を防ぐようになっている⁴⁾.フォールドタイプIに属す る脱炭酸酵素のLactobacillus 30a由来オルニチン脱炭酸酵 素 (ODC) についても、カルボキシ基はsi面を向いている とされる⁵⁾.一方ブタ由来AroDCとドーパミン脱炭酸酵素 阻害薬 CarbiDOPA (カルビドーパ) との複合体のX線結晶 構造解析では、PLPと結合した CarbiDOPA のカルボキシ基 はre面を向いており⁶⁾,今回のhHDCとHMEとの複合体 においても、PLPと結合したHMEのカルボキシメチル基 はre面を向いていた.N末端が約100残基欠損したヒト由 来GAD67もGABAとの複合体でX線結晶構造が解析され ており、その解析から予測される脱炭酸される前のカルボ キシ基もre面を向いている形で報告された⁷⁾.マウス由来 ODCは、フォールドタイプIIIに属するPLP酵素で、その X線結晶構造は活性中心部位のPLPのre面がリシン残基側 に向いており、si面が溶媒にさらされるという、フォール ドタイプIとは逆の向きであったが、このときの基質のカ ルボキシ基はsi面, すなわち溶媒にさらされる側に向いて いると解析された5). 脱炭酸反応において, α位の反応の 面に規則性があるかどうかまだ明確ではないが、グループ Ⅱ脱炭酸酵素については、後述するように共通して保存さ れているチロシン残基が存在し、そのヒドロキシ基が脱炭 酸後にプロトンをα位の炭素に付与するという説が唱えら

図3 AroDC内の基質結合部位

れている^{7,8)}. このチロシン残基が作用するには,α位の反応はre面で生じる方が効率がよい.しかし,たとえプロトンの付与がre面で行われるとしても,脱炭酸がsi面で行われる可能性を否定するわけではない.

AroDCは基質アナログのCarbiDOPAとの複合体の形で すでに構造解析されているので、基質結合部位について AroDCとhHDCの比較を行った(図3).活性部位の構造 は類似していたが、354残基目の部分については違いがみ られ、hHDCではセリン、AroDCではグリシンであった. この残基の影響を調べるために変異体を作製し、その酵素 特性を調べることにした.

2) 変異体S354GhHDCの特性

hHDCの354残基目のセリンをグリシンに置換した変異 体S354GhHDCについて、精製した試料のSDS-PAGEでは hHDCと同様に約50kDaのバンドのみが確認できた.ま た、吸収スペクトルについてもhHDCと同様にPLP酵素に 特徴的なピーク(335 nm と 425 nm 付近)を確認した. 酵 素活性についてはhHDCに比べて、ヒスチジンに対する親 和性が著しく低下し,Km値が10倍以上大きくなった.L-DOPA (L-ドーパ) との反応を調べると、ドーパミンの生 成がLC/MS/MSで確認できた. hHDCではドーパミンの 生成は微量であり(ヒスタミン生成の約200分の1,**表2**), また検出感度の問題もありKm値やkat値を得るために必 要な量の酵素を準備できなかったが、S354GhHDCにつ いてはドーパミンの生成量が多くなったので(hHDCの 100倍以上, 表2), K_m 値 (0.13 mM), k_{cat} 値 (1.3 s⁻¹) を 得た (表2). これらの値は,報告されているヒトAroDC ($K_{\rm m}$: 0.11 mM, $k_{\rm cat}$: 7.6 s⁻¹) やブタ AroDC ($K_{\rm m}$: 0.07 mM, $k_{\rm cat}$: 4.3 s⁻¹), ラットAroDC ($K_{\rm m}$: 0.086 mM, $k_{\rm cat}$: 5.0 s⁻¹) の $K_{\rm m}$ 値, k_{cat}値と似た値となった.S354GhHDCのL-DOPAについて の k_{cat}/K_m 値は9.9s⁻¹·mM⁻¹であり、ヒスチジンについての *k*_{cat}/*K*_m値の1.4s⁻¹·mM⁻¹と比べると約7倍大きい値であっ たことから、L-DOPAに対する特異性の方がヒスチジンよ りも高いといえる.このことから、酵素の機能という点 で、hHDCの活性部位を形成するアミノ酸の一つである 354残基目のセリンをグリシンに置換するだけで、本来の HDCよりもAroDCに近くなることがわかった.

3) ループ領域の解析

結晶構造解析からhHDCの330~340残基はループ構造

表2 活性型 HDC と S354G 変異体のヒスチジンと DOPA に対する酵素活性

	酵素活性 (nmol·min ⁻¹ ·mg ⁻¹)	K _m (mM)	k_{cat} (s ⁻¹)	$\frac{k_{\rm cat}/K_{\rm m}}{({\rm s}^{-1}\cdot{\rm m}{\rm M}^{-1})}$
ヒスチジン				
活性型HDC	1880 ± 150	0.10 ± 0.01	1.73 ± 0.07	17.3 ± 1.9
S354G変異体	620 ± 10	1.45 ± 0.21	2.01 ± 0.04	1.4 ± 0.2
L-DOPA				
活性型HDC	10 ± 1	n.d.	n.d.	n.d.
\$354G変異体	1160±20	0.13 ± 0.00	1.29 ± 0.01	9.9±0.1

n.d.: not detected.

図4 HDCの反応機構の仮説

であり,二量体のもう一方の活性中心部位に向かって突き 出した格好にみえる. ループ領域のアミノ酸残基は活性中 心部位のPLPとの結合や、基質を取り込む入口に関与して いると考えられた. Y334はループ領域内の残基で、フェ ニルアラニンに置換した変異体Y334FhHDCは、酵素活性 が著しく低下し、ヒスチジンからのヒスタミンの生成を確 認することができなかった.335nmと425nm付近の吸収 はPLPと活性中心部位のリシン残基とのシッフ塩基の形 成を示唆するもので、Y334FhHDCではその吸収がみられ るが、活性中心部位のリシンをグリシンに置換した変異 体K305GhHDCは330~430nmの領域で吸収がみられない. K305GhHDCも酵素活性が低いため、ヒスタミンの生成を 確認することができなかった。すなわち、ヒスタミン生 成においてY334はK305に匹敵するほど重要な残基である ことがわかった. ループ領域の役割については、AroDC、 GADについても調べられており^{7,8)}, これらの酵素間でお おむね同じ役目を果たしていると思われる。また、これら の酵素でHDCのY334に相当する残基が保存されている. チロシン残基は、これらの酵素内で基質が脱炭酸された後 に、ヒドロキシ基を介して活性中心部位から生成物が放出 される際のプロトンの供与に関与しているとの解釈がな されているが (図4). AroDCではループ領域の結晶構造 が解析されていないことや^{5,6)}, GADについてはhHDCと 同様に結晶構造におけるチロシン残基の位置がα位の炭素

原子にプロトンを与えられる位置に存在すること,フェ ニルアラニンに置換した変異体がGABAを生成しないこ とが示されている段階であることから⁷⁾,今後さらなる検 討が必要である.ブタ由来AroDCでは,対象のチロシン (Y332)をフェニルアラニンに置換した変異体の組換え体 タンパク質はドーパミンやセロトニンを生成せず,嫌気下 で脱炭酸依存型アミノ基転移の副反応が生じることが示さ れており⁸⁾,GADについても脱炭酸依存型アミノ基転移の 副反応が知られている⁹⁾.この副反応に際して,活性中心 部位のリシン残基がプロトンをC4'に付与することでケチ ミンが生じ,α-ケト酸とピリドキサミン5'-リン酸となり アポ酵素が生じる,と解釈されている⁴⁾.今後hHDCにつ いても副反応について研究を進めることで,反応機構がさ らに明らかになると思われる.

3. 動物のAroDCとHDCの系統樹

hHDCの結晶構造解析と変異体の解析から、hHDCの基 質が入るポケットについて、その空間を形成している一つ のセリンをグリシンに置換することで、ヒスチジンより もL-DOPAを基質として取り込みやすくなったという結果 は、セリンの場合には空間がイミダゾールの五員環に適す るようになっており、セリンの側鎖がなくなることによっ てベンゼン環の六員環に適するようになったと考えられ る. 今回の解析からは、基質認識に直接関与する残基はみ られず、基質の認識にはその基質に適した空間ができてい るかどうかが重要であるという結論に達したが、今後さま ざまな基質アナログを用いた結晶構造解析や、基質がない 状態での構造の解析をすることによって別の解釈が得られ るかもしれない. 今回の結果からは, HDCにおける 354番 目のセリンが基質特異性を左右する重要な残基であり、さ らにその置換によってHDCからAroDCへと酵素の機能を 変化させうることを示した. ヒスタミンやドーパミンは神 経伝達物質であり、ゲノム解析などからデータベースに掲 載されている神経を有する動物のAroDCとHDCの系統樹 を作製してみると図5のようになる.この図からは進化の 流れはAroDCからHDCの流れであると推察される.進化 の過程で、変異によってアミノ酸残基の置換が生じて、あ

図5 AroDCとHDCの系統樹(ClustalWを使用)

るときにAroDCからHDCが生じたのかもしれない.

4. おわりに

HDCのS354の塩基配列はagcであり、一塩基置換でggc となればGに変化する.現在Nなど他のアミノ酸に変化し たときの基質特異性などを調べている.一塩基多型とし てS354の変異は報告されておらず、今回活性型HDCとす るため切除したC末端側に位置するE644の一塩基多型が アレルギー性鼻炎のリスクを高めるという報告がある¹⁰⁾. 今後はAroDCとの相違点という観点からも、C末端を欠損 させない全長型HDCについての構造および機能解析が必 要であると考えている.

謝辞

研究を進めるにあたり,適切な環境を提供してください ました,兵庫県立大学の樋口芳樹先生に厚くお礼申し上げ ます.

献

文

- Komori, H., Nitta, Y., Ueno, H., & Higuchi, Y. (2012) J. Biol. Chem., 287, 29175–29183.
- Komori, H., Nitta, Y., Ueno, H., & Higuchi, Y. (2012) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., F68, 675–677.
- 3) 林秀行, 鏡山博行(1989) タンパク質核酸酵素, 34, 1893-1903.
- Eliot, A.C. & Kirsch, J.F. (2004) Annu. Rev. Biochem., 73, 383– 415.
- Kern, A.D., Oliveira, M.A., Coffino, P., & Hackert, M.L. (1999) *Structure*, 7, 567–581.
- Burkhard, P., Dominici, P., Borri-Voltattorni, C., Jansonius, J.N., & Malashkevich, V.N. (2001) *Nat. Struct. Mol. Biol.*, 8, 963–967.
- Bertordi, M., Gonsalvi, M., Contestabile, R., & Voltattorni, C.B. (2002) J. Biol. Chem., 277, 36357–36362.
- 8) Fenalti, G., Law, R.H., Buckle, A.M., Langendorf, C., Tuck, K., Rosado, C.J., Faux, N.G., Mahmood, K., Hampe, C.S., Banga, J.P., Wilce, M., Schmidberger, J., Rossjohn, J., El-Kabbani, O., Pike, R.N., Smith, A.I., Mackay, I.R., Rowley, M.J., & Whisstock, J.C. (2007) *Nat. Struct. Mol. Biol.*, **14**, 280–286.
- Porter, T.G., Spink, D.C., Martin, S.B., & Martin, D.L. (1985) Biochem. J., 231, 705–712.
- Gervasini, G., Agúndez, J.A.G., García-Menaya, J., Martínez, C., Cordobés, C., Ayuso, P., Cornejo, J.A., Blanca, M., & García-Martín, E. (2010) *Allergy*, 65, 1576–1584.