みにれびゅう

低温電子顕微鏡法を用いた単粒子解析の 最近の進展と膜タンパク質への応用

1. はじめに

生体高分子やその複合体の構造解析は、その機能の理解 のために重要である. 今までは, 主にX線結晶構造解析に より、高分解能での構造解析が行われてきた、しかし、た とえば天然の複合体を形成したままの結晶を作製するの が困難な場合も多かった. 最近, 低温電子顕微鏡 (クライ オ電顕)を用いた単粒子解析により、生体高分子複合体に ついて原子モデルが決定できるような分解能での構造解析 が可能となった. 単粒子解析では、クライオ電顕法を用い て、複合体が安定な条件で急速凍結を行い、非晶質の氷の 薄い層に閉じ込められた複合体を観察することができる. また、そのようにして得られた、いろいろな方向を向いた 複合体の電顕像から,いくつかの異なる構造が水溶液中に 混在するような場合にも, それらを分類し, それぞれの立 体構造を解析することも可能となっている. そこで、その ような高分解能構造解析が可能となった技術的な背景を紹 介し、どのような成果が得られているか紹介する.また、 その手法を,結晶化が困難な膜タンパク質などの構造解析 に応用する場合についての最近の進展についても述べる.

2. クライオ電顕試料作製と電子直接検出カメラ

まず,単粒子解析を行うためには,複合体粒子をコント ラストよく観察できる電顕試料を作製する必要がある¹⁾. 単粒子解析では,通常,1µm程度の大きさの穴が規則的

Kaoru Mitsuoka¹ and Christoph Gerle² (¹Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7–1 Mihogaoka, Ibaraki-shi, Osaka 567–0047, Japan, ²Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan)

DOI: 10.14952/SEIKAGAKU.2016.880532 © 2016 公益社団法人日本生化学会

光岡 薫¹, Gerle Christoph²

に空いているカーボン膜を貼ったグリッド(Quantifoilや C-flatという名前で販売されている)に、複合体を含む溶 液を滴下する.そして、余分の溶液をろ紙で吸い取って、 水溶液の体積を1000分の1程度にすることで、穴の部分に 薄い水溶液の膜を作製する.それを液体エタン中にすばや く挿入することで、非晶質の氷の膜を作製する.図1にそ の概念図を示した.ろ紙で吸い取る時間や、カーボン膜に 滴下する溶液量を変化させることで、なるべく薄く均一な 氷の層を実現する.しかし氷が薄くても、グリセロールな どを含んでいたり、塩濃度が高いなど、溶液の密度が高い 条件だと、クライオ電顕法では粒子のコントラストが低く なり、高分解能の解析を行うことが難しくなる.また、撮 影した画像上で一つ一つの粒子を切り出して画像解析を行 うため、複合体が単分散であることも重要である.

このように、高分解能の構造解析を行うためには、 試料 条件などを最適化する必要がある. そのような条件が達 成できる試料について、最近は単粒子解析により原子モ デルが得られるようになった. これに最も寄与していると 考えられるのが、電子を直接検出するCMOSカメラの開 発である²⁾. 以前は, シンチレータを用いて電子を光に変 換し、その光をCCDやCMOSカメラで検出することで電 子を画像に変換していた.そのため,シンチレータ部分で の電子の広がりなどのため、フィルムを用いて電子を検出 した方が高解像度を実現できていた.しかし、CMOSを薄 く加工することで、背面反射(back scatter)を軽減でき、 フィルムを上回る解像度の検出器を実現できることが明ら かになり、Gatan社からK2カメラが、FEI社からFalconカ メラが商品化された.これにより、最も解像度のよい領域 での量子効率は、フィルムで0.1以下だったものが、それ らのカメラでは0.3近くとなった³⁾. また, 高分解能で得 られる情報のS/Nが著しく向上した.図1に電子直接検出 カメラで撮影した分子量500,000程度のV1の粒子像を示し た.氷の厚さを粒子のサイズに近く薄くすることができれ ば、この程度のコントラストで複合体を観察することがで きる.

また,電子直接検出カメラによるクライオ電顕画像の 画質向上には,動画補正も寄与している.クライオ電顕 観察においては,電子線照射により試料から電子が放出 し,試料が正に帯電することが知られている.その帯電の

¹大阪大学超高圧電子顕微鏡センター(〒567-0047 大阪府茨 木市美穂ヶ丘7-1)

²兵庫県立大学大学院生命理学研究科ピコバイオロジー研究所, CREST科学技術振興機構(〒678-1297 兵庫県赤穂郡上郡町 光都 3-2-1)

Recent advances of single particle analysis by cryo-electron microscopy and its application to membrane proteins

図1 クライオ電顕観察用のグリッド作製法

(a)急速凍結によるクライオグリッド作製の模式図.(b)Quantifoilの低倍率の電顕像.このように黒くみえる金属グ リッド中に規則正しく穴が空いたカーボン膜があり、その穴に薄い氷の膜が張っている.(c)氷の膜の中央部分の 電顕像.多くのV₁粒子が観測できる.その一部を拡大した像を左に示す.V₁の1粒子を赤い丸で示した.

ため、電子線が影響を受け、結果として撮影中に画像が移動してみえると考えられている.これを帯電による像移動 (charge-induced movement)と呼ぶ.また、電子線照射に より、試料温度も上昇することが知られており、それによ り薄い非晶質の氷の膜が変化し、その形状が実際に変形す る可能性も指摘されている.どちらにしろ、実際にCMOS カメラを用いて撮影中に像が変化することが明らかになっ た.そこで、その撮影中の複合体粒子の移動を、CMOSで 動画として撮影し、そのフレームごとに位置補正すること で、位置変化に起因するぼけのない、高解像度の画像を得 ることができる⁴.

3. 自動データ収集と単粒子解析

このようにして、以前とは比較にならないほどよい解像 度の画像が得られるようになったが、それでも生体高分子 のクライオ電顕法では、電子線損傷のために照射できる電 子線量が限られるため、1枚の画像から得られるデータの S/Nでは高分解能の構造は得られない、そこで、大量の粒 子画像を積算して、S/Nを向上する必要がある。対称性な ど多くの要素によって左右されるので、必要な枚数を見積 もるのは簡単ではないが、多くの場合、数万から数十万の 粒子像が必要とされる。図1に示したように、1枚の電顕 像から数百の粒子をピックアップすることができるが、そ れでも数十万の粒子像を得るためには、1000枚以上の画 像を撮影する必要がある.そのような大量の粒子像を収集 するためには、電顕による画像収集が自動化されているこ とが望ましい.これにより、そのカーボン膜の穴の部分の 氷の膜を自動撮影することで、粒子像を得ることができ る. そのような自動撮影を行うソフトウェアとして, FEI 社のEPUや日本電子のJadasが、アカデミアからLeginon やSerialEMが実用化されている。また、長期間自動撮影 を行うには、クライオ電顕への寒剤の供給なども自動化さ れていることが望ましく、そのような電顕としてFEI社の Titan Kriosなどがある. FEI社はTitan Krios, Falcon II, EPU と、自動電顕から電子直接検出カメラ、データ収集ソフト ウェアとすべて自社でそろえており、それを用いることで 利便性の高いシステムを構築することができる。著者の一 人が所属する大阪大学超高圧電子顕微鏡センターでは、こ のFEI社製のシステムをそろえており、文部科学省「ナノ テクノロジープラットフォーム | の一環として、共用利用 が可能となっている.

さらに最近,音声認識などにも利用されている,期待値 最大化(EM)法を利用したRELIONという新たな単粒子 解析用のソフトウェアが開発された⁵⁾.このソフトでは, 条件付き確率を考えるベイズの定理を基にしたベイズ推定 を利用し,観測データから周辺尤度の最大化を行うEM法 により個々の投影像での粒子の方位などを推定する.その

図2 RELIONによる画像解析

(a) RELION の立ち上げ画面. 基本的には、この左パネルを順番に行っていく. ここでは、その2Dクラス分類と3D クラス分類での表示画像を(b)と(c)に示した. (b)2次元クラス分類結果. 画像はRELIONのチュートリアルデータ として提供されているβ-ガラクトシダーゼの例を用いた. ここで、多くの似た画像が存在してS/Nが向上した平均 像を赤枠で示した. そこに分類されなかった画像はこの過程で取り除かれる. (c)3次元クラス分類結果. 最も多く の画像が分類された3次元構造を赤枠で示した. このように、たとえば4種類に分類し、いくつかの異なる構造が 混じっていないかを再構成結果から確認する.

ような手法で決定した方位に従って、焦点位置からのずれ による画像の変調を補正しながら逆投影することで、立体 構造を計算する.この手法を,以前よりS/Nのよい電子直 接検出カメラからの画像に適用することで、原子モデルが 決定できる分解能の構造解析が可能となることが明らか になった. そのため、このEM法は他のFREALIGNなどの ソフトウェアにも採用され⁶⁾, それらのソフトウェアを用 いて, リボソームの構造が2.9 Å分解能で, β-ガラクトシ ダーゼの構造が2.2 Åで解析された. 図2にRELIONでの 解析画面の一部を示した. この解析の手順などは別の総 説で紹介したので、興味のある方はそちらを参照された い⁷⁾. また最近は、これにマスクを組み合わせることで、 一部に柔軟な領域があるような複合体についても高分解能 の構造解析が可能となり、スプライソソームの一部の構造 が3.7 Å分解能で計算された⁸⁾. これらの解析には,通常 のべ数千CPU時間が必要なので、ある程度の規模のクラ スタ計算機を利用する.

このように最近特に注目されている単粒子解析である

が、その歴史は古く、生体高分子のX線結晶学により原子 モデルが得られるようになった後、電顕による生体高分子 の三次元再構成が行われるようになってすぐに研究が開 始されている。たとえばリボソームの構造解析に長く利 用されてきた、しかし、その分解能は最近まで二次構造の 可視化程度に限られていたため、複合体中のサブユニット の位置の可視化などに利用されてきた. 我々もシャペロ ニン複合体に単粒子解析を応用し、そのフォールディング 中のリガンドの位置を明らかにした⁹⁾. そのような歴史の 中で、原子モデルを決定することができる条件については すでに理論的に検討されている. その結果, 電子線照射損 傷により限られたS/Nの粒子画像から向きが決定でき、原 子モデルが得られる分子量の下限として、100kDaが提唱 されている¹⁰⁾.現在,約93kDaのイソクエン酸デヒドロ ゲナーゼの構造が3.8 Å分解能で解析されている¹¹⁾. その 解析では、特に低分解能での量子効率がよいGatan社のK2 extremeカメラが利用されている. これは、CMOSの速い 読み出し性能を利用し、1電子の位置を検出することで高 い量子効率を実現している.ただし、このため照射できる 電子線量には上限があり、通常より長い露光が必要とな る.また、電子の位置をサブピクセルで同定することで、 4K×4KのCMOSから8K×8Kの画像を得る超解像技術も 利用している.

4. 膜タンパク質への応用

単粒子解析を用いることで、結晶を得ることが困難な試 料の高分解能の構造解析が進むと期待されている. そのよ うな結晶を得ることが難しい試料の一つに膜タンパク質が あげられる.実際、電子直接検出カメラが実用された初 期に、TRPV1チャネルの立体構造が3.3 Å分解能で¹²⁾、γ-セクレターゼの構造が3.4 Å分解能で¹³⁾, それぞれ解析さ れている. これら膜タンパク質の単粒子解析による解析に は、amphipolという界面活性剤の一種の両親媒性ポリマー が利用された. amphipolはいろいろな種類があるが、膜タ ンパク質との相互作用が強く、可溶化した界面活性剤と置 き換えて用いることができる¹⁴⁾. y-セクレターゼでは, ジ ギトニンを amphipol A8-35 に置き換えることで,分解能を 著しく向上することができた. その分解能の向上に最も重 要と考えられるのが,水溶液中の遊離 amphipolを除去で きることである. amphipolは膜タンパク質との相互作用が 強いので、溶液から膜タンパク質と相互作用していないも のを除去し、界面活性剤である amphipolを含まない溶液 に置き換えることができる.これにより、通常の水溶性の 複合体と同じように電顕試料を作製できる.

通常の界面活性剤では、臨界ミセル濃度(CMC)より 低い濃度にすると、膜タンパク質が凝集する.そのため、 界面活性剤をCMCより高い濃度に維持するが、そのよう な溶液中では、界面活性剤分子、そのミセル、界面活性剤 に包まれた膜タンパク質が共存している.しかし、界面活 性剤のミセルが共存した溶液で単粒子解析用の電顕試料を 作製すると、表面張力が低いので、薄く均一な氷を得るの が難しくなる.さらに、急速に冷却して薄い溶液の膜を 作製した際に、その表面に界面活性剤分子が濃縮される可 能性など、溶液の密度を均一に低く維持するのが難しくな り、コントラストの高い電顕像を与える電顕試料を再現性 よく作製するのが困難である.

amphipolはすべての膜タンパク質に適用できるわけでは なく、著者の一人は、amphipolと似た性質を持つLMNG という界面活性剤を用いて、同様に界面活性剤を含まない 膜タンパク質の水溶液を得るGraDeRという方法を開発し た¹⁵⁾.この方法では、LMNGを密度勾配遠心により取り 除く.この方法を用いることで、ミセルを含む水溶液で質 のよいグリッドができる確率を、5%以下から20%以上に 向上することができた.我々がThermus thermophilus由来

図3 GraDeRを用いた試料調製の模式図

通常の界面活性剤では、その濃度を下げても、可溶化させた膜 タンパク質のみにはできない.しかし、タンパク質との相互作 用が比較的強いLMNGを用いることで、密度勾配遠心を用い て、ほぼ遊離界面活性剤を除去できる.左下のパネルにLMNG の化学式を示した.

のV-ATPaseに利用した場合は、通常50%以上の確率で高 分解能の単粒子解析が可能と考えられるグリッドが得られ ている.図3にGraDeRの概念図を示す.GraDeRを用いる ことで、哺乳類F型ATP合成酵素やCaenorhabditis elegans 由来のinnexinギャップ結合チャネルなど、amphipolでよ い結果が得られなかった膜タンパク質について、良好な 単粒子解析用の電顕試料を作製することができた.これ らLMNGが有効であった膜タンパク質は、内部自由度が ありサブユニット間の相互作用が変化すると考えられ、ま た多くの天然脂質を含むものである.このようなサブユ ニット間の相互作用が弱いと考えられる膜タンパク質複合 体については、amphipolより膜タンパク質への結合が弱い LMNGがよい結果を与えたと考えている.

5. おわりに

すでに本文中で述べたが、大阪大学超高圧電子顕微鏡セ ンターは、文部科学省「ナノテクノロジープラットフォー ム」事業の「微細構造解析プラットフォーム」実施機関と して活動している.この事業により、センターに設置され た電子直接検出カメラとクライオ電顕を用いた自動データ 収集システムの利用が可能となっており、成果を公開すれ ば国内に限らず誰でも使用できる.また、そのクライオ電 顕試料の作製の支援も行っている.そのような活動を通じ て、クライオ電顕を用いた単粒子解析による生体高分子や その複合体の構造決定の、今後の日本での普及に貢献して いきたい.将来的には、X線結晶構造解析と同程度のPDB への登録が、クライオ電顕によって実現するように、単粒 子解析を多くの研究者が容易に試みることができる体制の 構築に尽力していく.

文 献

- Grassucci, R.A., Taylor, D.J., & Frank, J. (2007) Nat. Protoc., 2, 3239–3246.
- McMullan, G., Faruqi, A.R., Henderson, R., Guerrini, N., Turchetta, R., Jacobsm, A., & Van Hoften, G. (2009) *Ultramicroscopy*, 109, 1144–1147.
- 3) Miyazaki, N. & Murata, K. (2013) 顕微鏡, 48, 57-60.
- 4) Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., & Cheng, Y. (2013) *Nat. Methods*, 10, 584–590.
- 5) Scheres, S.H. (2012) J. Struct. Biol., 180, 519-530.
- Lyumkis, D., Brilot, A.F., Theobald, D.L., & Grigorieff, N. (2013) J. Struct. Biol., 183, 377–388.
- 7) Mitsuoka, K. (2015) 顕微鏡, 50, 180-184.

著者寸描

- ●光岡 薫(みつおか かおる)
- 大阪大学超高圧電子顕微鏡センター教授.博士(理学).

■略歴 1994年東京大学大学院理学系研究科博士課程修了. 松 下電器産業国際研究所,京都大学大学院理学研究科助手,同低 温物質科学研究センター助教授,産業技術総合研究所などを経 て,2015年より現職.

■研究テーマと抱負 低温電子顕微鏡を用いた生体高分子の高 分解能構造解析. 膜を介した物質輸送の理解のため, 関連タン パク質の構造解析を進めるとともに, 低温電子顕微鏡を用いた 単粒子解析などの構造解析法の普及に尽力したい.

■ウェブサイト http://www.uhvem.osaka-u.ac.jp/ ■趣味 映画鑑賞.

- Nguyen, T.H.D., Galej, W.P., Bai, X., Oubridge, C., Newman, A.J., Scheres, S.H.W., & Nagai, K. (2016) *Nature*, **530**, 298–302.
- Kanno, R., Koike-Takeshita, A., Yokoyama, K., Taguchi, H., & Mitsuoka, K. (2009) *Structure*, 17, 287–293.
- 10) Henderson, R. (1995) Q. Rev. Biophys., 28, 171-193.
- Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P., Davis, M.I., Pragani, R., Boxer, M.B., Earl, L.A., Milne, J.L., & Subramaniam, S. (2016) *Cell*, 165, 1698–1707.
- 12) Liao, M., Cao, E., Julius, D., & Cheng, Y. (2013) *Nature*, **504**, 107–112.
- 13) Lu, P., Bai, X.C., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S.H., & Shi, Y. (2014) *Nature*, **512**, 166–170.
- 14) Popot, J.L., Althoff, T., Bagnard, D., Banères, J.L., Bazzacco, P., Billon-Denis, E., Catoire, L.J., Champeil, P., Charvolin, D., Cocco, M.J., Crémel, G., Dahmane, T., de la Maza, L.M., Ebel, C., Gabel, F., Giusti, F., Gohon, Y., Goormaghtigh, E., Guittet, E., Kleinschmidt, J.H., Kühlbrandt, W., Le Bon, C., Martinez, K.L., Picard, M., Pucci, B., Sachs, J.N., Tribet, C., van Heijenoort, C., Wien, F., Zito, F., & Zoonens, M. (2011) *Annu. Rev. Biophys.*, 40, 379–408.
- Hauer, F., Gerle, C., Fischer, N., Oshima, A., Shinzawa-Itoh, K., Shimada, S., Yokoyama, K., Fujiyoshi, Y., & Stark, H. (2015) *Structure*, 23, 1769–1775.

● Christoph Gerle (ゲーレ クリストフ)

兵庫県立大学特任准教授(大学院生命理 学研究科).理学博士.

■略歴 1973年ドイツのミュンスター生 まれ.2000年英国ロンドン・インペリア ル・カレッジにて半年間修士論文研究後 ドイツ・ハノーファー大学理学部生物化 学科修士課程修了.DAADプログラムに て中国に2年間留学後,03年京都大学大 学院理学研究科生物科学専攻生物物理学

系(藤吉好則教授研究室)博士課程入学,06年博士後期課程 修了.06~09年京都大学藤吉研で研究員(JSPS/JBIC).09~13 年京都大学生命科学系キャリアパス形成ユニット特定助教(上 代淑人教授,長田重一教授).13年より現在兵庫県立大学理学 部大学院生命理学研究科特任准教授(CREST/JST,月原冨武教 授).

■研究テーマと抱負 電子顕微鏡を用いた膜タンパク質複合体 の機能構造解析.回転ATP合成,特に哺乳類ミトコンドリア ATP合成.また,敏感な哺乳類膜タンパク質複合体に適合する 新しい精製と試料調製法.

■ウェブサイト https://www.researchgate.net/profile/Christoph_ Gerle

■趣味 トレイルランニング.