みにれびゅう

リボソームのユビキチン化による翻訳の強制終了が 新生ペプチド鎖の分解を誘導する

松尾 芳隆

1. はじめに

リボソームはタンパク質を合成する分子マシーンであ り、遺伝子発現の核となる装置の一つである.これまで、 リボソームの機能は、mRNAに示された遺伝情報をタンパ ク質へ変換するという機械的なものとして認識されていた が、近年の研究では、リボソーム自身の分子修飾によって 翻訳が制御される例が相次いで報告されている.

翻訳停滞に起因する品質管理機構はその一例であり,翻 訳伸長の停滞を異常と認識し,その産物を分解する機構で ある.翻訳停滞とは,翻訳の伸長速度が著しく低下した状 態をさし,連続したレアコドンや,合成された新生ペプチ ド鎖中の塩基性アミノ酸とリボソームトンネル内の強い相 互作用などによって生じる.この状況下では,一定の割合 で翻訳の強制終了を意味するリボソームのサブユニット解 離が起こり,途中まで合成された新生ペプチド鎖はプロテ アソームによって速やかに分解される.この一連の反応誘 導にはリボソーム自身のユビキチン化が密接に関わって おり,本稿ではその分子機構と今後の課題について議論す る.

2. 翻訳停滞に起因する品質管理機構

翻訳の伸長速度はmRNAにコードされるコドンの最適 化に加え、合成された新生鎖とリボソームの相互作用に よって決定される.近年、同じアミノ酸をコードする同 義コドンの最適化によって、タンパク質の正確なフォール ディングやmRNAの寿命が決定されることが報告されて おり^{1,2)}、翻訳の伸長速度が遺伝子発現において非常に重 要な意味を持つことが明らかになっている.

mRNAとその翻訳産物の品質管理も翻訳と共役して行われており、翻訳伸長過程の異常を認識している.異常な

東北大学大学院薬学研究科遺伝子制御薬学分野(〒980-8578 宮城県仙台市青葉区荒巻字青葉6-3 C305)

Ribosome ubiquitination triggers co-translational quality control Yoshitaka Matsuo (Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai 980-8578 Japan) DOI: 10.14952/SEIKAGAKU.2019.910250 © 2019 公益社団法人日本生化学会 翻訳の代表として、ポリA鎖の翻訳が知られている³⁾.ポ リA鎖はmRNAの転写後修飾の一つであり、非翻訳領域 である3'末端に付加され、mRNAの安定化や翻訳開始の促 進などに関与している.しかし、細胞内では、ORF中に 誤ってポリA鎖が付加されるケースが一定の割合で存在し ており、それらは品質管理機構によって除去されている. 通常、翻訳されえないポリA鎖が翻訳された場合には、ポ リリシンの新生ペプチド鎖が合成される.ポリリシンは 強い塩基性を示すため、RNAを主な構成成分とするリボ ソームトンネルとの相互作用によって、強い翻訳停滞を引 き起こす.細胞はこの翻訳停滞を異常と認識し、翻訳中の mRNAとその翻訳産物を分解する品質管理機構を誘導さ せる⁴⁾.

図1に翻訳停滞に起因する品質管理機構の概略図を示 す. リボソームが、ポリA鎖などの連続した塩基性配列 (アレスト配列)を合成すると、新生ペプチド鎖とリボ ソームトンネル内の相互作用によって翻訳の伸長が阻害さ れる (図1①)⁴⁾. その結果, mRNA は未同定のエンドヌク レアーゼによって切断され、切断された3'末端側のmRNA はエキソリボヌクレアーゼのXmlによって分解される (no go decay:NGD, 図12)⁵⁾. 一方, 5'末端側のmRNA は終止コドンを持たないnon stop mRNAとなるため、後 続のリボソームによって翻訳され,3'末端上で再びリボ ソームの翻訳停止を引き起こす(図1③)⁶.翻訳終結因子 と相同性を持つDom34/Hbs1は3'末端で停止したリボソー ムの空のAサイトに結合し、ATPaseであるABCE1と協調 して、サブユニット解離を引き起こす(図1④)6. 最終的 に3'末端が露出したmRNAはエキソソームによって分解 される (non stop decay: NSD)⁶. 一方, 5'末端側のmRNA 上で停滞するリボソームのAサイトには、まだmRNAが 残っているため, Dom34/Hbs1がアクセスできず, non stop mRNAとは異なる機構によってリボソームのサブユニッ ト解離が引き起こされる (図1⑤)⁷⁻⁹⁾. 二つの経路からペ プチジルtRNAを含む異常な60Sサブユニットが産生され るわけだが、品質管理因子であるRgc2は60Sサブユニッ ト上に存在するtRNAを認識し結合することで、E3ユビキ チンリガーゼであるLtn1を呼び込み, RQC複合体を形成 する (ribosome quality control: RQC, 図1⑥)¹⁰⁾. RQC複 合体上の新生ペプチド鎖はLtn1によってユビキチン化さ

図1 翻訳停滞に起因する品質管理機構

れ、プロテアソームによって分解される¹¹⁾.

なお、リボソームの解離後に誘導される新生ペプチド 鎖の分解機構は、ribosome-associated quality control (RQC) と呼ばれている.

リボソームタンパク質uS10のユビキチン化が品質 管理機構 RQC の誘導を惹起する

翻訳の伸長速度は,mRNAの安定性や新生ペプチド鎖の 折りたたみとも密接に関わっており,翻訳伸長速度の低 下が必ずしも異常な翻訳というわけではない.したがっ て,細胞は正常と異常を区別する指標,また異常な翻訳を 品質管理機構へ導く機構を保持しているはずである.筆者 らは,この問いに答えるべく解析を進めてきた結果,品質 管理機構の誘導にE3ユビキチンリガーゼであるRqt1 (ribosome quality control trigger factor 1)によるリボソームタン パク質uS10 (40Sサブユニットの構成因子)のユビキチン 化が必須であることを明らかにした⁷⁾.

先にも述べたように、ポリリシンやポリアルギニン配列 などの塩基性を示すペプチドは、強い翻訳停滞を引き起こ すアレスト配列として認識されている.したがって、翻訳 停滞は、人工的に設計したアレスト配列をレポーター遺伝 子中に配置することで誘導させることが可能であり、翻訳 停滞に起因する品質管理機構の解析は、アレスト配列を含 むレポーター遺伝子から産生される全長タンパク質と、翻 訳停滞の結果生じるアレスト配列までの翻訳産物(アレ スト産物)の観察によって進められてきた(図2).野生 株では、アレスト配列を持つレポーター遺伝子の発現は強 く抑えられ、アレスト産物もプロテアソーム系により分解 されるため観察することができないが、アレスト産物をユ ビキチン化するLtn1の欠損下では観察が可能となる(図 2A).一方で、Ltn1の欠損にRqt1の欠損やuS10のユビキ チン化部位への変異を加えると、アレスト産物の消失と全 長タンパク質の増加が観察された(図2A).この結果は、 アレスト配列上で起こっていたリボソームの解離が、Rqt1 の欠損やuS10のユビキチン化を止めることで完全に阻害 されることを示している.つまり、細胞はサブユニット解 離させるべきリボソームにユビキチン化という目印をつ け、積極的に翻訳を強制終了させていることがわかる(図 2C)⁷⁾.

では、解離させるべきリボソームを識別する際に、細胞 はどのようにして正常と異常を区別しているのだろうか. 細胞内のmRNA上では、複数のリボソームが同時に翻訳 を行っており、この状態で先頭のリボソームが長時間停 滞すると、後続のリボソームが追いつき、いわゆる交通渋 滞のような状況に陥る.そこで筆者らは、これを無細胞タ ンパク質合成系で再現し、Rqt1によるuS10のユビキチン 化を観察した.その結果、リボソームが衝突した"collided ribosomes"は、単独で停滞したリボソームに比べ効率よく ユビキチン化されていた(図2B).これは、強い翻訳停滞 によって引き起こされるリボソームの交通渋滞が、翻訳 の異常を示す一つの指標になりうることを示している(図 2C)^{12,13)}.

なお、本稿では述べないが、翻訳停滞によって引き起こ されるmRNAの分子内切断(NGD)も、Rqt1の欠損によっ て完全に阻害される.しかし、uS10のユビキチン化部位へ の変異ではそのような阻害はみられないため、mRNAの分 子内切断は、Rqt1による異なるリボソームタンパク質への ユビキチン化が関与していることがうかがえる.

また、ここで述べた結果は、出芽酵母を材料に筆者らが 行ったものであるが、哺乳類細胞でもほぼ同様の結果が、 MRCのHegdeらのグループによって報告されている^{8,13)}. つまり、リボソームのユビキチン化を引き金とした品質管 理機構の誘導は、真核生物で広く保存されたシステムであ

図2 翻訳停滞に起因する品質管理機構の誘導メカニズム

(A) アレスト配列R (CGN) 12をコードする *GFP-R12-FLAG-HIS3* レポーター解析 (Matsuo *et al.* 2017 *Nat commun.*より改変).
(B) 無細胞タンパク質合成系を用いた翻訳停滞リボソームの解析 (Ikeuchi *et al.* 2019 *EMBO J.*より改変).
(C) 翻訳停滞に起因する品質管理機構の認識メカニズム.

ることを示している.

ユビキチン化に依存したリボソームのサブユニット 解離

先にも述べたように,途中まで合成された新生ペプチ ド鎖は,60Sサブユニット上で認識され,ユビキチン-プ

ロテアソーム系によって分解される.一方, Rqt1による uS10のユビキチン化はタンパク質分解のシグナルにはな らず,停滞したリボソームの解離を誘導する印になるわけ だが,終止コドン非依存のサブユニット解離の分子機構は ほとんど明らかになっていない.

non stop mRNAでは、翻訳中のリボソームがmRNAの3' 末端で完全に停止し、空のAサイトに翻訳終結因子と相同

図3 ユビキチンに依存したリボソームの解離モデル

性を持つDom34/Hbs1が結合することでリボソームの解離 が誘導される.一方,ORF中で翻訳停滞したリボソーム のAサイトには、まだmRNAが残っており、Aサイトのコ ドンに対応するtRNAがアクセス可能であるため、Dom34/ Hbs1との結合が阻害される可能性が高い.実際にDom34 の欠損は、Rqt1によるuS10のユビキチン化によって誘導 される品質管理機構の効率に影響を与えない.また、リボ ソーム自身のユビキチン化がサブユニット解離の引き金に なっていることからも、通常の翻訳終結とは異なる新たな 分子機構が存在する可能性が高い.

筆者らは、これまでに、Rqt1に加え、品質管理機構の 誘導に関与する3種類の新規RQT因子(Rqt2:RNAヘリ カーゼ、Rqt3:ユビキチン結合タンパク質、Rqt4:機能未 知)を見いだしている(図2A)⁷⁾.これらの因子は三者複 合体(RQT複合体)を形成し、いずれも品質管理機構の 誘導に必須である.さらに、Rqt2のATPase活性とRqt3の ユビキチン結合能がリボソームの解離誘導に重要であるこ ともわかっているが、その機能は不明である.

現在考えられうる仮説としては、1) Rqt1によるuS10の ユビキチン化をRqt3が認識し、Rqt2がATPのエネルギー を利用してリボソームを直接解離させる可能性、もしく は、2) 同一mRNA上で衝突したリボソームの構造変換を 誘導し、サブユニット解離に関与する因子のリクルート を促している可能性があげられる(図3). いずれにせよ RQT 複合体の機能解明が、ユビキチン化に依存したリボ ソームのサブユニット解離の分子機構の解明につながるは ずである.

5. おわりに

近年、中枢神経系に特異的なtRNAの変異によって引き 起こされる翻訳停滞がGTPBP2によって解消されること、 またこの翻訳停滞の解消が阻害されることで神経細胞死を 引き起こすことが報告された¹⁴⁾.また、RQC複合体上の 新生ペプチド鎖をユビキチン化するLtn1のホモログであ るListerinも神経変性疾患マウス*lister*の原因遺伝子として 同定されており¹⁵⁾、翻訳停滞に起因する品質管理機構の 破綻が神経細胞死の引き金になりうる可能性が示唆されて いる. そのため, 同機構の標的となる内在性因子の同定 は, 神経変性疾患の原因を理解する上で重要な基礎知識に なることが期待されているが, 現在のところ同機構の標的 となる内在性因子に関する報告は, ポリA鎖だけである. したがって, 翻訳停滞に起因する品質管理機構の生理学的 意義を明らかにするためにも, 内在の標的を同定すること が今後の最も大きな課題である.

謝辞

本稿で紹介した"リボソームのユビキチン化による翻訳 の強制終了が新生ペプチド鎖の分解を誘導する"の研究は 東北大学の稲田利文教授のもとで行ったものです.関係者 の皆様に感謝いたします.

献

文

- Nedialkova, D.D. & Leidel, S.A. (2015) Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. *Cell*, 161, 1606–1618.
- Yu, C.H., Dang, Y., Zhou, Z., Wu, C., Zhao, F., Sachs, M.S., & Liu, Y. (2015) Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. *Mol. Cell*, **59**, 744–754.
- Inada, T. & Aiba, H. (2005) Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. *EMBO J.*, 24, 1584–1595.
- 4) Ito-Harashima, S., Kuroha, K., Tatematsu, T., & Inada, T. (2007) Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. *Genes Dev.*, 21, 519–524.
- Doma, M.K. & Parker, R. (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. *Nature*, 440, 561–564.
- 6) Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., & Inada, T. (2012) Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. *Mol. Cell*, 46, 518–529.
- Matsuo, Y., Ikeuchi, K., Saeki, Y., Iwasaki, S., Schmidt, C., Udagawa, T., Sato, F., Tsuchiya, H., Becker, T., Tanaka, K., et al. (2017) Ubiquitination of stalled ribosome triggers ribosomeassociated quality control. *Nat. Commun.*, 8, 159.
- Sundaramoorthy, E., Leonard, M., Mak, R., Liao, J., Fulzele, A., & Bennett, E.J. (2017) ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediat-

ing Regulatory 40S Ribosomal Ubiquitylation. Mol. Cell, 65, 751-760.

- Juszkiewicz, S. & Hegde, R.S. (2017) Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. *Mol. Cell*, 65, 743–750.
- 10) Brandman, O., Stewart-Ornstein, J., Wong, D., Larson, A., Williams, C.C., Li, G.W., Zhou, S., King, D., Shen, P.S., Weibezahn, J., et al. (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. *Cell*, **151**, 1042–1054.
- Bengtson, M.H. & Joazeiro, C.A. (2010) Role of a ribosomeassociated E3 ubiquitin ligase in protein quality control. *Nature*, 467, 470–473.
- 12) Ikeuchi, K., Tesina, P., Matsuo, Y., Sugiyama, T., Cheng, J., Saeki, Y., Tanaka, K., Becker, T., Beckmann, R., & Inada, T. (2019)

著者寸描

●松尾 芳隆(まつお よしたか)

東北大学大学院薬学研究科助教.理学博士.

■略歴 2006年奈良先端科学技術大学院大学情報科学研究科修 了(理学博士),同年同COE研究員,08年Heidelberg大学BZH ポスドク研究員,14年より現職.

Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. *EMBO J.*, •••, e100276.

- Juszkiewicz, S., Chandrasekaran, V., Lin, Z., Kraatz, S., Ramakrishnan, V., & Hegde, R.S. (2018) ZNF598 Is a Quality Control Sensor of Collided Ribosomes. *Mol. Cell*, 72, 469–481.
- 14) Ishimura, R., Nagy, G., Dotu, I., Zhou, H., Yang, X.L., Schimmel, P., Senju, S., Nishimura, Y., Chuang, J.H., & Ackerman, S.L. (2014) RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. *Science*, 345, 455–459.
- 15) Chu, J., Hong, N.A., Masuda, C.A., Jenkins, B.V., Nelms, K.A., Goodnow, C.C., Glynne, R.J., Wu, H., Masliah, E., Joazeiro, C.A., et al. (2009) A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. *Proc. Natl. Acad. Sci. USA*, **106**, 2097–2103.