大量の微小区画化ユニットを用いたヘテロな細胞応答の解析

服部 一輝

本稿では、ヘテロな細胞集団の大量解析の重要性と技術的アプローチについて概説する. 疾患細胞を含むさまざまな細胞集団のヘテロ性が明らかになる中、大量の個々の細胞を多 面的に解析する技術の必要性が高まっている.従来のウェル型解析では、解析可能なス ケールに限界があるため、マイクロ流体技術を用いて個々の細胞を微小区画化する技術の 開発が進んでいる.この技術を用いれば、低コストで大量のサンプルをハイスループット に培養・解析することが可能である.また、この技術は大量の微小区画内で多細胞体を大 量に作製することにも応用されている.具体的には、単一B細胞からのIgG分泌量計測や、 T細胞と標的細胞の相互作用解析、均一サイズのがんスフェロイドの大量作製などが達成 されており、生物医学研究や医療応用への貢献が期待される.

1. ヘテロな細胞集団の大量解析の重要性

細胞集団は、しばしば不均一(ヘテロ)である. 組織中の細胞はもとより、クローン細胞株のような一見均一だと思われる細胞集団でも、個々の細胞の状態や応答にはヘテロ性がある. この事実は、トランスクリプトーム解析を筆頭に、オープンクロマチン解析やイメージング解析など、多様な1細胞解析により明らかになってきた^{1,2)}. 疾患をもたらす細胞集団でも同様で、個体間、さらには、個体内の疾患細胞もヘテロであることが明らかになっている^{3,4)}. がんオルガノイドのような*in vitro*の培養系でも、同様のヘテロ性が観察される.

大量のヘテロな細胞の解析は、人工的に摂動を与える実 験系でも重要となる。一つの想像しやすい例は、遺伝子 ノックダウン、ノックアウトスクリーニングであろう。多 様な遺伝子改変ツールの開発により、siRNAによるノック ダウンや、CRISPRによるノックアウトなどを利用し、遺 伝子発現パターンが多様な細胞集団を比較的容易に作製で きるようになった⁵⁾。そのような細胞集団の中から目的の

東京大学先端科学技術研究センター (〒153-8904 東京都目黒 区駒場4-6-1)

Analysis of heterogeneous cellular responses using sub-millimeter compartmentalized units

Kazuki Hattori (Research Center for Advanced Science and Technology, The University of Tokyo, 4–6–1 Komaba, Meguro, Tokyo 153–8904, Japan)

本総説は2023年度奨励賞を受賞した.

DOI: 10.14952/SEIKAGAKU.2024.960829 © 2024 公益社団法人日本生化学会 表現型を示す細胞を取捨選択することで、特定の細胞応答 に重要な遺伝子の同定が可能となる. たとえば、ノックア ウト細胞ライブラリに対して細胞死誘導刺激を施し、 生き 残った集団の中でノックアウトされている遺伝子を同定す ることで、細胞死誘導に必要な遺伝子を特定できる⁶.こ の例のように、細胞集団の中の1細胞ごとの違いに注目し た解析だけではなく、異なる性質を持つコロニーを大量に 解析する手法もあり、その代表例が、化合物スクリーニン グである (図1). 均質な細胞集団をウェルなどの区画に 分配し、さまざまな化合物を個々に処置した上で、細胞応 答を計測する.この過程により,目的の細胞応答を誘導す る化合物を同定可能となり、また、化合物の標的因子の情 報から、細胞応答を制御する因子の同定につながる. 実際 に、創薬のプロセスでも多用されており、疾患モデル細胞 などに対して化合物スクリーニングを実施することで、治 療薬候補が同定されている").

このように、細胞集団内のヘテロな1細胞や1コロニー ごとの特性を個々に計測することは、生物学、医学、薬学 など多面的な価値を生み出す.そのため、膨大な数の1細 胞や1コロニーを、多角的な側面から解析する技術の重要 性は疑う余地がない.

ヘテロな細胞集団を微小ユニットに区画化することの重要性

大量のヘテロな細胞を解析する上で,各細胞をいかに して区画化するかが重要となる局面がある.プール型の CRISPRノックアウトスクリーニングなど,ヘテロな細胞 集団を一つの培養容器で培養・解析することが可能な系も

図1 大量細胞の解析における, ヘテロ性が生じる例 図1,2,3,6の一部は, BioRender.comにより作成した.

図2 区画化が重要となる解析の例

ある⁵⁾. また,最近は imaging-based screen も行われるよう になり,細胞応答と遺伝子欠損情報を画像情報で一括取 得する方法(image-based phenotyping, *in situ* genotyping) な どが開発されている⁸⁾. しかしながら,以下のような計測 系においては,各条件間のコンタミネーションを防ぐため に,区画化が重要となる(**図2**).

例1:化合物やペプチドなどの因子で摂動を与える系

因子特異的な作用を計測するため,条件ごとに物理的 な区画化が必要となる.具体的には,化合物の混在を防 ぐプラスチック製のウェルプレートなどが用いられ,384 ウェルプレートや1536ウェルプレートを用いた化合物ス クリーニングなどが実施されている.

例2:細胞外分泌物の計測

分泌物とその由来細胞を紐づけるための区画が必要となる.近年、細胞外小胞(extracellular vesicle: EV) にバー コードを搭載する技術により、多様な細胞由来のEVの一 括解析が実現しており⁹⁾、今後の汎用化が期待されるもの の、サイトカイン放出量の測定時など、依然多くの場合に 区画化が必要となる.

例3:細胞間相互作用の計測

特定の細胞間相互作用を抽出するためには,特定の細胞 セットを区画化して計測する必要がある.空間トランスク リプトーム解析などの発展により,組織中の細胞間相互作 用などを解析できるようになりつつあるが,計測対象は限 られている^{10,11)}.

例4:オルガノイドやスフェロイドの計測

個々の多細胞体の計測の際にも,多細胞体間の接着や相 互作用を防ぐために,区画化が重要となる.

区画化した培養ユニットを小型化することも、大量解析 において重要となる.解析対象が小さいほど、計測スルー プットが上がり、試薬等に要するコストは下がり、細胞の インキュベーションなどに必要なスペースも最小化できる ため、解析する条件数のスケールアップが容易になる.

以上のように,解析対象を微小区画化することは,複雑な 細胞応答を高スループットに計測する上で重要であり,ヘテ ロな細胞集団の大量解析において必須の技術基盤となる.

図3 微小空間内で1細胞から放出された細胞外小胞(EV)量を経時計測する手法の例

3. 大量の微小区画化ユニットの作製, 解析

1) ウェルを用いた微小区画化

一般的には、市販の96ウェル、384ウェル、1536ウェ ルプレートなどを用いた方法が汎用されている.384ウェ ル、1536ウェルプレートを使用する場合、各ウェルのサ イズが小さくなるため、自動分注ワークステーションがあ れば、比較的ハンドリングが容易となる、それぞれのウェ ルは物理的に隔離されており、サンプル間の培地等の混入 がないため、実験条件と実験結果が1対1で容易に紐づく ことが大きな利点となる.たとえば、アレイ型CRISPRス クリーンの場合,特定の1遺伝子がノックアウトされた細 胞コロニーが各ウェルに配置されるため、計測結果と遺 伝子情報との紐づけが容易となる. なお、アレイ型のレ ンチウイルスgRNA ライブラリなども市販されており、実 際にスクリーニングを実施するための材料は整っている. また、化合物スクリーニングにおいても、1化合物のみを 1ウェルに添加することで、各化合物の純粋な効果が計測 可能となる.実際に、アカデミックな創薬支援機構や試薬 ベンダーから、ウェル型の化合物ライブラリが提供されて おり, さまざまなスクリーニングが実施されている^{12,13)}. 計測の観点では、プレートリーダーを活用することで、細 胞集団を対象としたルシフェラーゼアッセイやELISAが 容易に行える.加えて、明視野イメージングと発光計測の 組合わせなど、計測の多重化も比較的実施しやすい. この ように、市販タイプのウェルプレートを用いた解析が、最 も簡便で、さまざまな用途で広く利用されている.

フォトリソグラフィーを用いて作製可能なマイクロウェ ルデバイスを使う方法もある.市販ウェルプレートがマ イクロリットルスケールの反応系であるのに対して、ナノ リットルスケールの、より微小なマイクロウェルを使うこ とで、1細胞由来の微量な液性因子の大量・並列計測など が可能となる.このような微小ウェルにおいては、微量な ものを濃縮して計測可能であるというメリットがあり、こ こでは、EVの1細胞計測の例をいくつかあげる.基本的 な戦略は、微小な空間で1細胞を培養し、放出されたEV を抗体で捕捉し、蛍光ラベルした異なる抗体を新たに加え て定量するものである(図3).具体的には、一次元バー コード型に配置された複数の抗体アレイでEVを捕捉する ものや¹⁴⁾,抗体をコーティングしたビーズでEVを捕捉す るものがある¹⁵⁻¹⁷⁾.このほかにも,ウェル底に吸着させた 抗体でEVを捕捉し,全反射蛍光顕微鏡で定量するものも ある¹⁸⁾.

しかし、ウェル型で大量解析を行うには本質的な課題が ある.たとえば、10万の条件でスクリーニングを実施し ようとすると、少なくとも260枚程度の384ウェルプレー トが必要となり、5リットル程度の培地を消費する.ま た、自動分注機を用いた細胞の播種を、1枚あたり3分と 仮定した場合でも、計13時間を要する.すなわち、サン プルが大量になるほど、解析に要する費用、時間が膨大に なり、現実的に遂行が難しくなる、マイクロウェルを用い ると上記の課題が解決されるアプリケーションもあるが、 一部にとどまる.また、多くのマイクロウェル作製には、 専門的な技術が必要となり、汎用化は容易ではない.この ように、解析対象となる条件数が増加するにつれて、ウェ ル型解析系とは異なる、よりスケーラブルな手法が求めら れる.

2) 浮遊型微小区画化ユニット

一般的に、浮遊型での培養・解析系は、ウェル型解析系 に比べて大スケール化しやすい.たとえば、コラーゲンな どを材料とした球状の担体の表面や内側で細胞を培養する ことで、浮遊状態で細胞を大量培養する技術が広く用いら れている.近年、微小区画化された浮遊型細胞培養ユニッ トの開発が進んでおり、ウェル型では達成が難しいスケー ルでの大量培養・解析が可能になってきている.大量サン プルの安定なハイスループット計測のためには、各培養ユ ニットがマイクロメートルスケールと小型であること、そ して各ユニットが均一サイズであることが重要であり、こ れらの要件を満たすためにさまざまなマイクロ流体技術が 活用されている.加えて、ソーティング技術と組み合わせ ることにより、特定の培養ユニットを高速に選別すること が可能となり、マルチモーダル解析との接続性も高い.

a. 油中水滴

大量の微小な油中水滴が,微小区画化ユニットとして長 年広く用いられており,さまざまな分子解析に活用されて いる. droplet digital polymerase chain reaction (ddPCR) は, DNAやRNAなどの核酸を絶対定量する高感度,高精度な 計測系であり,解析のための機器も市販されている. こ の反応系においては,数万個の微小油中水滴中に,PCRの 鋳型となる核酸が1コピー/液滴以下になるように希釈し て封入し,増幅が確認された油中水滴の数を計測するこ とで,鋳型の濃度を推定する¹⁹⁾.シングルセルRNAシー ケンシング法においても,微小油中水滴が活用されてい る. この手法では,油中水滴の中に1細胞と1バーコード ビーズを封入することで,1細胞由来のmRNAに対して, ユニークなバーコードを付与する.油中水滴を微小区画と して利用することで,各区画間のコンタミネーションを防 ぎ,また,マイクロ流体技術を活用することで,その油中 水滴を均一かつ高速に作製することで,高効率かつ高精度 な1細胞解析が可能となる^{20,21)}.

このように多様な分子計測に活用されている油中水滴 は、細胞の培養・解析にも応用できる(図4).特に、ピ コリットルスケールの空間の中に液性因子を蓄積できるた め、1細胞由来の少量の液性因子を高感度に計測できると いう強みがある.油中水滴内に細胞を封入するという特質 上、浮遊細胞の適合度が高く、区画化された浮遊1細胞の 大量解析への応用がなされている.以下に油中水滴を用い た細胞解析の例をあげる.

一つの確立されたワークフローとして,特定の抗原を 認識するIgGの放出量を1細胞レベルで計測・解析する技 術, DropMapがある.この手法では、B細胞一つと、抗体 を捕捉するナノボディがコーティングされた磁気ビーズ を複数個、一つの油中水滴内に共封入し、液滴内でサン ドイッチELISAを行うことで、B細胞から放出されたIgG を定量する. ビーズの蛍光シグナルの経時計測,および, IgGの抗原タンパク質との結合度計測も可能であるため、 IgG 分泌の速度,特異性,そして,親和性の同時計測が達 成される.背景のノイズと極力区別するため、磁気ビー ズを1か所に整列させた上で蛍光計測を行うことで、検出 に十分な signal to noise ratio (SN比) を確保している^{22,23)}. さらに、この計測技術に液滴ソーティング法とシングルセ ルバーコーディング法とを組み合わせた CelliGO が開発さ れ、特異的な抗体を放出する細胞の濃縮、および、IgGの 配列決定も達成されている. これらの技術群は、特異的な 機能を発揮する抗体医薬の開発に大きく貢献することが期 待され、企業における研究開発が進んでいる²⁴⁾.

EV放出量の1細胞計測にも油中水滴系が有用である. EVマーカーに蛍光タンパク質を結合させた遺伝子を過剰 発現させた細胞を油中水滴に封入し,水滴内に蓄積した蛍 光EVを定量することで,1細胞由来のEV放出量の計測が 可能である(図5)²⁵⁾.加えて,大量の液滴を整列させる マイクロデバイス中で経時計測することで,1細胞のEV 放出ダイナミクスの計測が達成されている.この系を用い て初めて,細胞が分裂するタイミングでEV放出量が一時 的に増加することが明らかになり,生物学的解析における

図4 マイクロ流体デバイスを用いた,油中水滴内への細胞の 封入

1細胞計測の重要性を物語っている.

細胞間相互作用の解析にも油中水滴が活用されてい る.樹状細胞とT細胞との相互作用²⁶,NK細胞と標的細 胞^{27,28},T細胞受容体(TCR)-T細胞と標的細胞²⁹⁾との相 互作用を観察した例などがあり、中でも、複数液滴の融 合や特定の液滴の選別などの技術を駆使したMODEs法で は、標的細胞と相互作用してIFNyを放出したCAR-T細胞 の高速選別に成功している³⁰⁾.これら手法は、相互作用 の結果を蛍光計測して、目的の細胞を選別するという戦略 をとっているが、一方で、それぞれの液滴に固有のDNA バーコードを付加する手法の開発も進んでいる³¹⁾.これ により、より大スケールで網羅的な細胞相互作用解析が進 展することが期待される.

ここまでで紹介した細胞解析以外に,均一サイズのス フェロイドを大量に作製する際にも,油中水滴が活用され A 系の概要

sfGFP Phase Contrast 100 μm

D 油中水滴内での蛍光EV蓄積のタイムラプス

E 1細胞ごとのEV放出ダイナミクス(蓄積量)

F 1細胞ごとのEV放出ダイナミクス(2時間ごと)

図5 油中水滴内での1細胞EV放出ダイナミクスの計測(Hattori et al., Anal. Chem. 2022²⁵⁾から一部編集して転載)

ている. ピコリットルからナノリットルスケールの空間に 多数の細胞を封じ込めることができるため、一般的に用い られているU底プレートなどよりも、細胞凝集を誘導しや すいものと考えられる. 具体的には、主にがんスフェロイ ドの大量作製の実施例がある^{32,33)}.

ここであげた例のように,油中水滴はさまざまな細胞解 析や多細胞体形成に有用であることが示されてきている. 一方で,培地交換が難しく,培養できる細胞種,時間に厳 しい制限が加わるという課題もある.油中水滴のサイズは 可変であるため、大きな水滴を用いることで1細胞あたり の培地量を増やし、細胞の生存率を上げることは可能だ が、放出されたIgGやEVの濃度は下がるためこれらの計 測感度は下がる.加えて、細胞間相互作用を誘導しにくく なる、細胞凝集を起こしにくくなる、などの弊害も予想さ れる.そのため、より広範な細胞種を用いた計測や、より 長時間にわたる計測などにおいては、より細胞の生存に有 利な微小区画を用いた系が望まれる.

図6 ハイドロゲル担体を用いた1細胞・多細胞の培養・計測

b. ハイドロゲルを用いた微小区画

油中水滴の課題を克服するためには、水溶液で培養可能 な微小区画が必要となるが、ハイドロゲルを用いた手法が 有効である(図6).アガロースやアルギン酸などのハイ ドロゲルは、カプセルなどを形成することにより細胞を区 画化することが可能でありつつも、十分な大きさの孔が空 いているため、培地成分の供給が達成される.加えて、ハ イドロゲルの小型培養ユニットは、市販のフローサイト メーターなどで選別することが可能であり、これまで達成 が難しかった、接着した状態の細胞の選別などが可能とな る.このような特性により、ハイドロゲルを用いた微小区 画化は、従来の方法では困難だった細胞操作や解析を実現 する有望な手法となっている.

i)ハイドロゲル球体表面での培養

直径50から100マイクロメートル程度の、均一な球状ハ イドロゲルの表面で接着細胞を培養する手法がある. 古く より, 拡大培養のために使用されてきたマイクロスフィア と同様の培養手法であるが、マイクロ流体技術を活用する ことで均一なサイズの球状ハイドロゲルを作製でき、大量 の均一な培養ユニットの作製が実現している.

具体的には, 球状ゼラチンの表面に1細胞を接着させた ものを大量に準備し, それらを油中水滴の中に封入し, 大 量の単一接着細胞を対象として, 液性因子放出量の高速 計測が達成されている³⁴⁾. また, ペプチド結合型アルギン 酸の球状ゲル上や, ゼラチンコーティングされたマイクロ キャリア上で上皮細胞の層形成も可能で, このような小型 培養ユニットを用いて, 接着細胞の高速三次元イメージン グも実現している³⁵⁾.

ii) Nanovial を用いた培養

洗練された単一細胞培養・計測系として, Nanovialを用いたものがある.これは, 直径数10マイクロメートルの 凹みのある球体(三日月状)ハイドロゲルであり, 凹みの 部分にゼラチンを処置することで細胞が接着できるように している^{36,37)}.マイクロ流体技術の活用で, 高速かつ均質 な作製が達成されており、サイズの変更に対しても柔軟で ある.細胞がゲル中に包埋されていないため、培地成分の 供給に障壁がなく、計測のための試薬等の供給も容易であ る.浮遊型培養系のため、大量並列解析が可能で、市販の セルソーターでの分取も達成されている³⁸.

この技術は、さまざまな液性因子放出の1細胞計測に応 用されている.細胞が接着している凹みの部分に、液性因 子に対する抗体を吸着させ、1細胞由来の液性因子を捕獲 した後に、蛍光抗体でさらにラベルすることによって、液 性因子の放出量定量を可能にしている^{39,40)}.この技術を用 いて、B細胞からのIgG定量、間葉系幹細胞(MSC)から のEV定量が1細胞レベルで達成されている.選別された 高EV放出MSCを心筋梗塞モデルマウスに移植する実験も 行われており、低放出細胞に比べて治療効果が高いことか ら、本手法を用いた細胞選別の医学的有用性も示されてい る⁴⁰⁾.

発展形として、TCRを介したT細胞の捕獲も可能になっ ている.主要組織適合抗原・ペプチド複合体 (pMHC)を Nanovialの凹みに吸着させてT細胞を捕獲した後、T細胞 の活性化をIFNyの放出量で評価・選別することで、活性 化したT細胞のTCRの配列決定が実現している⁴¹⁾.この 手法によって、TCRの結合能、サイトカイン放出量、およ び、TCRの配列情報が1細胞レベルで接続され、T細胞を 用いたがん免疫療法への応用が期待される.

さらなる技術展開として、液性因子放出量とトランス クリープトームを1細胞レベルでつないだSEC-seqが開発 された^{42,43)}.この手法では、Nanovialに吸着させた抗体で 1細胞由来のサイトカインを捕獲したのち、バーコードつ き抗体を処置し、シーケンシングによりバーコードを定量 することで、サイトカイン定量を可能にしている.より具 体的には、シングルセルシーケンシングではなく、シング ルゲルシーケンシング、すなわち、Nanovial一つに対して ユニークなDNAバーコードを付加したシーケンシングを 行っている.単一細胞由来のトランスクリプトームとサイ トカインに結合した抗体のバーコードを同時に読むこと で、1細胞の遺伝子発現パターンと特定のサイトカイン放 出量の同時計測に成功している.

iii) ハイドロゲルカプセルを用いた培養

最後に浮遊細胞の区画化に適した,小型ハイドロゲルカ プセルについて紹介する.Pico-shellは,油中水滴内でポ リエチレングリコール (PEG)とデキストランを相分離さ せることにより作製する,直径90µm程度の中空ハイドロ ゲルカプセルである.マイクロ流体デバイスを用いた高速 大量作製が可能であり,藻類や酵母の培養に加え,CHO 細胞の培養例が報告されている.市販のソーターを用い たpico-shellの選別も行われており,増殖能が高いクロレ ラの濃縮に成功している⁴⁴⁾.また,異なる種類のハイド ロゲルカプセルを用いて,その内壁に上皮細胞層を形成さ せ,細胞が生み出す応力の解析にも活用されている⁴⁵⁾.

カプセル型構造は、スフェロイドなどの多細胞体の大量 培養にも有効であり、複数の報告がある.スフェロイドの 作製には通常、U底ウェルプレートが用いられるが、作製 可能なスフェロイドの数がウェル数に限定され、大量作 製には時間とコストがかかる.1ウェルに多数のマイクロ ウェルが配置された商品も市販されており、プレート1枚 で、数万個のスフェロイドの作製が可能になっているもの の、ウェル内で浮遊したスフェロイドどうしの融合など、 大量・均質作製への課題は残る.そこで、均一サイズのカ プセルを大量に作製できるというマイクロ流体技術の利点 を活かし、さまざまなスフェロイドを大量かつ均質に作製 する手法が開発されてきた⁴⁶⁻⁴⁹⁾.これにより、これまで達 成が難しかった、再現性の高い三次元細胞体を用いたスク リーニング系の開発が進むものと考えられる.

4. 総括

本稿では、個々の細胞レベルでの多様な表現型を高精度 かつ大規模に定量化する手法について概説した.特に、マ イクロ流体技術を応用した微小培養ユニットの開発が、従 来のウェル型解析では実現困難であったスケーラビリティ とハイスループット性を両立したことを強調した.具体的 には、油中水滴培養系、ハイドロゲル球体表面培養法、ハ イドロゲルカプセル内培養法など、革新的な培養・計測プ ラットフォームの開発により、EVやIgGなどの分泌因子 を単一細胞レベルで経時的に定量化した事例などを紹介し た.本稿で論じたように、これまでの技術開発は主に単一 細胞解析に焦点を当てていた.しかしながら、生体内の細 胞の大半は周囲の細胞群と相互作用しながら機能してお り、多細胞集団の解析は生命現象の理解に不可欠である. そのため今後は、多様な多細胞体を大規模かつハイスルー プットに解析する技術へと発展することが期待される.

献

文

1) Zhu, Q., Zhao, X., Zhang, Y., Li, Y., Liu, S., Han, J., Sun, Z.,

Wang, C., Deng, D., Wang, S., et al. (2023) Single cell multiomics reveal intra-cell-line heterogeneity across human cancer cell lines. *Nat. Commun.*, **14**, 8170.

- Mattiazzi Usaj, M., Yeung, C.H.L., Friesen, H., Boone, C., & Andrews, B.J. (2021) Single-cell image analysis to explore cellto-cell heterogeneity in isogenic populations. *Cell Syst.*, 12, 608–621.
- Iacobuzio-Donahue, C.A., Litchfield, K., & Swanton, C. (2020) Intratumor heterogeneity reflects clinical disease course. *Nat. Cancer*, 1, 3–6.
- Dagogo-Jack, I. & Shaw, A.T. (2018) Tumour heterogeneity and resistance to cancer therapies. *Nat. Rev. Clin. Oncol.*, 15, 81–94.
- Bock, C., Datlinger, P., Chardon, F., Coelho, M.A., Dong, M.B., Lawson, K.A., Lu, T., Maroc, L., Norman, T.M., Song, B., et al. (2022) High-content CRISPR screening. *Nat. Rev. Methods Primers*, 2, 1–23.
- Nakamura, T., Ogawa, M., Kojima, K., Takayanagi, S., Ishihara, S., Hattori, K., Naguro, I., & Ichijo, H. (2021) The mitochondrial Ca²⁺ uptake regulator, MICU1, is involved in cold stressinduced ferroptosis. *EMBO Rep.*, 22, e51532.
- Eder, J., Sedrani, R., & Wiesmann, C. (2014) The discovery of first-in-class drugs: origins and evolution. *Nat. Rev. Drug Discov.*, 13, 577–587.
- Lawson, M. & Elf, J. (2021) Imaging-based screens of poolsynthesized cell libraries. *Nat. Methods*, 18, 358–365.
- 9) Kunitake, K., Mizuno, T., Hattori, K., Oneyama, C., Kamiya, M., Ota, S., Urano, Y., & Kojima, R. (2024) Barcoding of small extracellular vesicles with CRISPR-gRNA enables comprehensive, subpopulation-specific analysis of their biogenesis/release regulators. *Nat. Commun.*, **15**, 9777.
- Cang, Z., Zhao, Y., Almet, A.A., Stabell, A., Ramos, R., Plikus, M.V., Atwood, S.X., & Nie, Q. (2023) Screening cell-cell communication in spatial transcriptomics via collective optimal transport. *Nat. Methods*, 20, 218–228.
- 11) Pham, D., Tan, X., Balderson, B., Xu, J., Grice, L.F., Yoon, S., Willis, E.F., Tran, M., Lam, P.Y., Raghubar, A., et al. (2023) Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. *Nat. Commun.*, 14, 7739.
- Lukonin, I., Serra, D., Challet Meylan, L., Volkmann, K., Baaten, J., Zhao, R., Meeusen, S., Colman, K., Maurer, F., Stadler, M.B., et al. (2020) Phenotypic landscape of intestinal organoid regeneration. *Nature*, 586, 275–280.
- 13) Mead, B.E., Hattori, K., Levy, L., Imada, S., Goto, N., Vukovic, M., Sze, D., Kummerlowe, C., Matute, J.D., Duan, J., et al. (2022) Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. *Nat. Biomed. Eng.*, 6, 476–494.
- 14) Ji, Y., Qi, D., Li, L., Su, H., Li, X., Luo, Y., Sun, B., Zhang, F., Lin, B., Liu, T., et al. (2019) Multiplexed profiling of single-cell extracellular vesicles secretion. *Proc. Natl. Acad. Sci. USA*, **116**, 5979–5984.
- 15) Son, K.J., Rahimian, A., Shin, D.-S., Siltanen, C., Patel, T., & Revzin, A. (2016) Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. *Analyst*, **141**, 679–688.
- 16) Fathi, M., Joseph, R., Adolacion, J.R.T., Martinez-Paniagua, M., An, X., Gabrusiewicz, K., Mani, S.A., & Varadarajan, N. (2021) Single-Cell Cloning of Breast Cancer Cells Secreting Specific Subsets of Extracellular Vesicles. *Cancers (Basel)*, **13**, 4397.
- 17) Fathi, M., Martinez-Paniagua, M., Rezvan, A., Montalvo, M.J., Mohanty, V., Chen, K., Mani, S.A., & Varadarajan, N. (2023) Identifying signatures of EV secretion in metastatic breast cancer

through functional single-cell profiling. iScience, 26, 106482.

- 18) Nikoloff, J.M., Saucedo-Espinosa, M.A., Kling, A., & Dittrich, P.S. (2021) Identifying extracellular vesicle populations from single cells. *Proc. Natl. Acad. Sci. USA*, **118**, e2106630118.
- 19) Hou, Y., Chen, S., Zheng, Y., Zheng, X., & Lin, J.-M. (2023) Droplet-based digital PCR (ddPCR) and its applications. *TrAC Trends Analyt. Chem.*, **158**, 116897.
- 20) Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. *Cell*, **161**, 1202–1214.
- 21) Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017) Massively parallel digital transcriptional profiling of single cells. *Nat. Commun.*, **8**, 14049.
- 22) Eyer, K., Doineau, R.C.L., Castrillon, C.E., Briseño-Roa, L., Menrath, V., Mottet, G., England, P., Godina, A., Brient-Litzler, E., Nizak, C., et al. (2017) Single-cell deep phenotyping of IgGsecreting cells for high-resolution immune monitoring. *Nat. Biotechnol.*, **35**, 977–982.
- 23) Bounab, Y., Eyer, K., Dixneuf, S., Rybczynska, M., Chauvel, C., Mistretta, M., Tran, T., Aymerich, N., Chenon, G., Llitjos, J.-F., et al. (2020) Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. *Nat. Protoc.*, 15, 2920–2955.
- 24) Gérard, A., Woolfe, A., Mottet, G., Reichen, M., Castrillon, C., Menrath, V., Ellouze, S., Poitou, A., Doineau, R., Briseno-Roa, L., et al. (2020) High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. *Nat. Biotechnol.*, 38, 715–721.
- 25) Hattori, K., Goda, Y., Yamashita, M., Yoshioka, Y., Kojima, R., & Ota, S. (2022) Droplet array-based platform for parallel optical analysis of dynamic extracellular vesicle secretion from single cells. *Anal. Chem.*, **94**, 11209–11215.
- 26) Konry, T., Golberg, A., & Yarmush, M. (2013) Live single cell functional phenotyping in droplet nano-liter reactors. *Sci. Rep.*, 3, 3179.
- 27) Antona, S., Platzman, I., & Spatz, J.P. (2020) Droplet-based cytotoxicity assay: Implementation of time-efficient screening of antitumor activity of natural killer cells. ACS Omega, 5, 24674– 24683.
- 28) Antona, S., Abele, T., Jahnke, K., Dreher, Y., Göpfrich, K., Platzman, I., & Spatz, J.P. (2020) Droplet-based combinatorial assay for cell cytotoxicity and cytokine release evaluation. *Adv. Funct. Mater.*, **30**, 2003479.
- 29) Segaliny, A.I., Li, G., Kong, L., Ren, C., Chen, X., Wang, J.K., Baltimore, D., Wu, G., & Zhao, W. (2018) Functional TCR T cell screening using single-cell droplet microfluidics. *Lab Chip*, 18, 3733–3749.
- 30) Madrigal, J.L., Schoepp, N.G., Xu, L., Powell, C.S., Delley, C.L., Siltanen, C.A., Danao, J., Srinivasan, M., Cole, R.H., & Abate, A.R. (2022) Characterizing cell interactions at scale with madeto-order droplet ensembles (MODEs). *Proc. Natl. Acad. Sci.* USA, 119, e2110867119.
- Kawasaki, F., Mori, Y., Mimori, T., Sato, I., & Ota, S. (2023) Identification of in-droplet multicellular communities by lightinduced combinatorial DNA barcoding. *Chem. Eur. J.*, 29, e202301133.
- 32) Lee, J.M., Choi, J.W., Ahrberg, C.D., Choi, H.W., Ha, J.H., Mun, S.G., Mo, S.J., & Chung, B.G. (2020) Generation of tumor spheroids using a droplet-based microfluidic device for photo-

thermal therapy. Microsyst. Nanoeng., 6, 1-10.

- 33) Kwak, B., Lee, Y., Lee, J., Lee, S., & Lim, J. (2018) Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. J. Control. Release, 275, 201–207.
- Wang, M., Nai, M.H., Huang, R.Y.-J., Leo, H.L., Lim, C.T., & Chen, C.-H. (2021) High-throughput functional profiling of single adherent cells *via* hydrogel drop-screen. *Lab Chip*, 21, 764–774.
- 35) Yamashita, M., Tamamitsu, M., Kirisako, H., Goda, Y., Chen, X., Hattori, K., & Ota, S. (2024) High-throughput 3D imaging flow cytometry of suspended adherent 3D cell cultures. *Small Meth*ods, 8, 2301318.
- 36) Lee, S., de Rutte, J., Dimatteo, R., Koo, D., & Di Carlo, D. (2022) Scalable fabrication and Use of 3D structured microparticles spatially functionalized with biomolecules. *ACS Nano*, 16, 38–49.
- 37) Ghosh, R., Arnheim, A., van Zee, M., Shang, L., Soemardy, C., Tang, R.-C., Mellody, M., Baghdasarian, S., Sanchez Ochoa, E., Ye, S., et al. (2024) Lab on a particle technologies. *Anal. Chem.*, 96, 7817–7839.
- 38) de Rutte, J., Dimatteo, R., Zhu, S., Archang, M.M., & Di Carlo, D. (2022) Sorting single-cell microcarriers using commercial flow cytometers. *SLAS Technol.*, 27, 150–159.
- 39) de Rutte, J., Dimatteo, R., Archang, M.M., van Zee, M., Koo, D., Lee, S., Sharrow, A.C., Krohl, P.J., Mellody, M., Zhu, S., et al. (2022) Suspendable hydrogel nanovials for massively parallel single-cell functional analysis and sorting. *ACS Nano*, 16, 150–159.
- 40) Koo, D., Cheng, X., Udani, S., Baghdasarian, S., Zhu, D., Li, J., Hall, B., Tsubamoto, N., Hu, S., Ko, J., et al. (2024) Optimizing cell therapy by sorting cells with high extracellular vesicle secretion. *Nat. Commun.*, **15**, 4870.
- Koo, D., Mao, Z., Dimatteo, R., Noguchi, M., Tsubamoto, N., McLaughlin, J., Tran, W., Lee, S., Cheng, D., de Rutte, J., et al. (2024) Defining T cell receptor repertoires using nanovial-based binding and functional screening. *Proc. Natl. Acad. Sci. USA*, 121, e2320442121.
- Udani, S., Langerman, J., Koo, D., Baghdasarian, S., Cheng, B., Kang, S., Soemardy, C., de Rutte, J., Plath, K., & Di Carlo, D. (2024) Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. *Nat. Nanotechnol.*, 19, 354–363.
- 43) Cheng, R.Y.-H., de Rutte, J., Ito, C.E.K., Ott, A.R., Bosler, L., Kuo, W.-Y., Liang, J., Hall, B.E., Rawlings, D.J., Di Carlo, D., et al. (2023) SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells. *Nat. Commun.*, 14, 3567.
- 44) van Zee, M., de Rutte, J., Rumyan, R., Williamson, C., Burnes, T., Radakovits, R., Sonico Eugenio, A., Badih, S., Lee, S., Lee, D.-H., et al. (2022) High-throughput selection of cells based on accumulated growth and division using PicoShell particles. *Proc. Natl. Acad. Sci. USA*, **119**, e2109430119.
- 45) Trushko, A., Meglio, I.D., Merzouki, A., Blanch-Mercader, C., Abuhattum, S., Guck, J., Alessandri, K., Nassoy, P., Kruse, K., Chopard, B., et al. (2020) Buckling of an epithelium growing under spherical confinement. *Dev. Cell*, **54**, 655–668.e6.
- 46) Alessandri, K., Feyeux, M., Gurchenkov, B., Delgado, C., Trushko, A., Krause, K.-H., Vignjević, D., Nassoy, P., & Roux, A. (2016) A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). *Lab Chip*, 16, 1593–1604.
- 47) Cohen, P.J.R., Luquet, E., Pletenka, J., Leonard, A., Warter, E.,

Gurchenkov, B., Carrere, J., Rieu, C., Hardouin, J., Moncaubeig, F., et al. (2023) Engineering 3D micro-compartments for highly efficient and scale-independent expansion of human pluripotent stem cells in bioreactors. *Biomaterials*, **295**, 122033.

48) van Loo, B., ten Den, S.A., Araújo-Gomes, N., de Jong, V., Snabel, R.R., Schot, M., Rivera-Arbeláez, J.M., Veenstra, G.J.C., Passier, R., Kamperman, T., et al. (2023) Mass production of lu-

著者寸描 💻

●服部 一輝(はっとり かずき)

東京大学先端科学技術研究センター 特 任助教.博士(薬学). ■略歴 愛知県出身.2013年東京大学 大学院薬学系研究科博士課程修了,13~ 18年東京大学大学院薬学系研究科特任研 究員・特任助教・助教,18~20年Massachusetts Institute of Technology/Brigham and Women's Hospital研究員,20年より現職.

■研究テーマと抱負 生命科学に基盤を

おきつつも, 異分野融合の実践に挑戦中です. ■ウェブサイト https://researchmap.jp/kzkhattori menogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. *Nat. Commun.*, 14, 6685.

49) Maekawa, R., Hattori, K., Kirisako, H., Iwamoto, Y., Kawasaki, F., Yoneshiro, T., Sakai, J., & Ota, S. (2024) Large-scale generation of uniform sub-100 μm adipocyte spheroids in hydrogel microcapsules using a flow-focusing microfluidic device. *bioRxiv*, 2024.06.08.597376.